Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hapipah M. Ali, ${ }^{\text {a }}$ Mohd Idris Najwa, ${ }^{\text {a }}$ Ming-Jin Xie ${ }^{\text {b }}$ and Seik Weng $\mathrm{Ng}^{\mathbf{a} *}$

${ }^{\text {a }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{\mathbf{b}}$ School of Chemistry, Yunnan University, Kunming 650092, People's Republic of China

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.075$
$w R$ factor $=0.209$
Data-to-parameter ratio $=16.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

2-Methyl-1H-indole-3-carbaldehyde 2-thienoylhydrazone

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$, the amide H atom interacts with the amide O atom of an adjacent molecule $[\mathrm{N} \cdots \mathrm{O}=3.027$ (4) \AA A to form a zigzag chain that runs along the c axis of the monoclinic unit cell.

Comment

This study continues our work on Schiff bases that are formed by condensing an aldehyde with thienoylhydrazide (Ali, Abdul Halim et al., 2005; Ali, Puvaneswary et al., 2005).

(I)

In the title compound, (I) (Fig. 1), the molecules interact through the amide N and carbonyl O atoms to form a zigzag chain (Table 1 and Fig. 2). The amine unit in the indolyl portion does not participate in hydrogen-bonding interactions.

Experimental

2-Methylindole-3-carbaldehyde ($0.73 \mathrm{~g}, 4.6 \mathrm{mmol}$) and 2-thienoylhydrazide $(0.66 \mathrm{~g}, 4.6 \mathrm{mmol})$ were heated in ethanol $(100 \mathrm{ml})$ for 2 h . The solvent was removed and the product recrystallized from acetonitrile.

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$
$M_{r}=283.34$
Monoclinic, $P 2_{1} / c$
$a=11.688$ (2) A
$b=11.546$ (2) \AA
$c=10.133$ (2) A
$\beta=94.694(2)^{\circ}$
$V=1362.8(4) \AA^{3}$

Data collection

Bruker APEX-II area-detector diffractometer
φ and ω scans
Absorption correction: none
11514 measured reflections

$$
Z=4
$$

$$
D_{x}=1.381 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, yellow
$0.24 \times 0.23 \times 0.20 \mathrm{~mm}$

2793 independent reflections

1420 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$
$\theta_{\text {max }}=26.4^{\circ}$

Received 12 September 2006
Accepted 12 September 2006

organic papers

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.075
$$

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0979 P)^{2}\right.
$$

$w R\left(F^{2}\right)=0.209$
$S=1.02$
2793 reflections
170 parameters
H-atom parameters constrained

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 n \cdots \mathrm{O}^{1}{ }^{\mathrm{i}}$	0.86	2.27	$3.027(4)$	147

Symmetry code: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.

The C -bound H atoms were placed at calculated positions $(\mathrm{C}-\mathrm{H}=$ 0.93 and $0.96 \AA$), and were included in the refinement in the ridingmodel approximation with $U_{\text {iso }}(\mathrm{H})$ set to 1.2-1.5 times $U_{\text {eq }}(\mathrm{C})$. The amide and amine H atoms were similarly treated $[\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})\right]$. The benzene ring was refined as a rigid hexagon in order to increase the data/parameter ratio as the crystal was not strongly diffracting.

Data collection: APEXII (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X-S E E D$ (Barbour, 2001); software used to prepare material for publication: SHELXL97.

The authors thank the Scientific Advancement Grant Allocation (No. 66-02-03-0046/Oracle 815-0046) and the University of Malaya for supporting this study.

Figure 1

A partial packing diagram of (I). Displacement ellipsoids are drawn at the 50% probability level, and H atoms are shown as spheres of arbitrary radii. The dashed lines represent hydrogen bonds [symmetry code: (i) x, $\left.\frac{3}{2}-y,-\frac{1}{2}+z\right]$.

References

Ali, H. M., Abdul Halim, S. N., Lajis, N. H., Basirun, W. J., Zain, S. M. \& Ng, S. W. (2005). Acta Cryst. E61, o914-o915.

Ali, H. M., Puvaneswary, S., Basirun, W. J. \& Ng, S. W. (2005). Acta Cryst. E61, o1083-o1084.
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2004). APEXII (Version 7.23A) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

