Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hapipah M. Ali,^a Mohd Idris Najwa,^a Ming-Jin Xie^b and Seik Weng Ng^a*

^aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^bSchool of Chemistry, Yunnan University, Kunming 650092, People's Republic of China

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.006 \text{ Å}$ R factor = 0.075 wR factor = 0.209 Data-to-parameter ratio = 16.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Methyl-1*H*-indole-3-carbaldehyde 2-thienoylhydrazone

In the title compound, $C_{15}H_{13}N_3OS$, the amide H atom interacts with the amide O atom of an adjacent molecule $[N \cdot \cdot O = 3.027 (4) \text{ Å}]$ to form a zigzag chain that runs along the *c* axis of the monoclinic unit cell.

Received 12 September 2006 Accepted 12 September 2006

Comment

This study continues our work on Schiff bases that are formed by condensing an aldehyde with thienoylhydrazide (Ali, Abdul Halim *et al.*, 2005; Ali, Puvaneswary *et al.*, 2005).

In the title compound, (I) (Fig. 1), the molecules interact through the amide N and carbonyl O atoms to form a zigzag chain (Table 1 and Fig. 2). The amine unit in the indolyl portion does not participate in hydrogen-bonding interactions.

Experimental

2-Methylindole-3-carbaldehyde (0.73 g, 4.6 mmol) and 2-thienoylhydrazide (0.66 g, 4.6 mmol) were heated in ethanol (100 ml) for 2 h. The solvent was removed and the product recrystallized from acetonitrile.

Crystal data $C_{15}H_{13}N_3OS$ $M_r = 283.34$ Monoclinic, $P2_1/c$ a = 11.688 (2) Å b = 11.546 (2) Å c = 10.133 (2) Å $\beta = 94.694$ (2)° V = 1362.8 (4) Å³

Data collection

diffractometer

 φ and ω scans

Bruker APEX-II area-detector

Absorption correction: none

11514 measured reflections

Z = 4 D_x = 1.381 Mg m⁻³ Mo K α radiation μ = 0.24 mm⁻¹ T = 295 (2) K Block, yellow 0.24 × 0.23 × 0.20 mm

2793 independent reflections

1420 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.078$

 $\theta_{\rm max} = 26.4^\circ$

© 2006 International Union of Crystallography All rights reserved

organic papers

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0979P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.075$	+ 0.3022P]
$wR(F^2) = 0.209$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
2793 reflections	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
170 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D-\mathrm{H}\cdots A$
N1-H1 n ···O1 ⁱ	0.86	2.27	3.027 (4)	147

Symmetry code: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

The C-bound H atoms were placed at calculated positions (C–H = 0.93 and 0.96 Å), and were included in the refinement in the ridingmodel approximation with $U_{\rm iso}({\rm H})$ set to 1.2–1.5 times $U_{\rm eq}({\rm C})$. The amide and amine H atoms were similarly treated [N–H = 0.86 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm N})$]. The benzene ring was refined as a rigid hexagon in order to increase the data/parameter ratio as the crystal was not strongly diffracting.

Data collection: *APEXII* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXL97*.

The authors thank the Scientific Advancement Grant Allocation (No. 66-02-03-0046/Oracle 815-0046) and the University of Malaya for supporting this study.

Figure 1

A partial packing diagram of (I). Displacement ellipsoids are drawn at the 50% probability level, and H atoms are shown as spheres of arbitrary radii. The dashed lines represent hydrogen bonds [symmetry code: (i) x, $\frac{3}{2} - y$, $-\frac{1}{2} + z$].

References

- Ali, H. M., Abdul Halim, S. N., Lajis, N. H., Basirun, W. J., Zain, S. M. & Ng, S. W. (2005). Acta Cryst. E61, 0914–0915.
- Ali, H. M., Puvaneswary, S., Basirun, W. J. & Ng, S. W. (2005). Acta Cryst. E61, o1083-o1084.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2004). *APEXII* (Version 7.23A) and *SAINT* (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.